Completeness of the rootvectors of a dissipative Sturm-Liouville operators on time scales

نویسنده

  • Hüseyin Tuna
چکیده

In this article, we consider dissipative Sturm–Liouville operators in the limit-circle case on time scales. Then, using the Livšic’s Theorem, we prove the completeness of the system of root vectors for dissipative Sturm–Liouville operators. 2013 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness of the system of root functions of q-Sturm-Liouville operators

In this paper, we study q-Sturm-Liouville operators. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self-adjoint and other extensions of q-Sturm-Liouville operators in terms of boundary conditions. Then we prove a theorem on completeness of the system of eigenfunctions and associated functions of dissipative operators by ...

متن کامل

Eigenfunction expansion in the singular case for q-Sturm-Liouville operators

In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Sturm–liouville Operators on Time Scales

We establish the connection between Sturm–Liouville equations on time scales and Sturm–Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm–Liouville equations on time scales which have been obtained by various authors in the past.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2014